
United States Patent

USO095.35994B1

(12) (10) Patent No.: US 9,535,994 B1
Grier (45) Date of Patent: Jan. 3, 2017

(54) METHOD AND SYSTEM FOR FORENSIC 7,698.327 B2 * 4/2010 Kapur 707/7O6
INVESTIGATION OF DATA ACCESS 7,859,392 B2 * 12/2010 McClellan et al. 340/441

8,200,527 B1 * 6/2012 Thompson G06Q 10/0639

(76) Inventor: Jonathan Grier, Lakewood, NJ (US) 2005/0033777 A1* 2, 2005 Moraes et al. '97.
- 2006/0129522 A1* 6, 2006 Itterbeck et al. 707/1

(*) Notice: Subject to any disclaimer, the term of this 2008/0086473 A1* 4/2008 Searl et al. 707/9
patent is extended or adjusted under 35 2008/0281915 A1* 11/2008 Elad et al. .. TO9.204
U.S.C. 154(b) by 422 days. 2009/0083184 A1 3/2009 Eisen 705/50

2010/0174813 A1* 7, 2010 Hildreth GO6F 17,30943
TO9,224

(21) Appl. No.: 13/073,978 2010/0274573 A1* 10, 2010 Feied G06Q 50/22
705/2

(22) Filed: Mar. 28, 2011 2011/0106910 A1* 5, 2011 Grasset 709/217
2011/0167342 A1* 7, 2011 de la Pena G06F 3/0488

Related U.S. Application Data 715/702
2011/0242979 A1 * 10, 2011 Feroz et al. 370,235

(60) Provisional application No. 61/318,071, filed on Mar. 2012/0203846 A1* 8, 2012 Hull et al. TO9,206
26, 2010. 2013/013.6253 A1* 5, 2013 Liberman Ben-Ami

et al. 379,265.09
(51) Int. Cl. 2013/0227604 A1* 8, 2013 Shields et al. 725/19

G06F 7/00 (2006.01)
G06F 7700 (2006.01) OTHER PUBLICATIONS
G06F 7/30 (2006.01)

(52) U.S. Cl Liu, "SIDD: A framework for detecting sensitive data exfiltration by
CPC G06F 17/30864 (2013.01) an insider attack. Hawaii International Conference on System

."r r Sciences, 2009.
(58) Field of Classification Search Farmer and Venema, “Forensic Discovery”. Pearson, 2005.

CPC G0,S.S., ''.8. 9. Carvey, Windows Forensic Analysis DVD Toolkit, Second Edition,
Syngress, 2009.

17/30289; G06F 17/30873 Grier, Detecting Data Theft With Stochastic Forensics, to be pub
USPC 707/706, 1, 202: 709/217, 204, 219; lished in the Journal of Digital Investigation, 2011, Proc. 2011

717/124; 726/26, 23: 340/441; 370/235; Digital Forensics Research Conf. Elsevier.
725/19; 379/265.09 k .

See application file for complete search history. cited by examiner
Primary Examiner — Susan Chen

(56) References Cited

U.S. PATENT DOCUMENTS

5,761,302 A 6, 1998 Park
6,460,036 B1 * 10/2002 Herz GO6F 17,3O867

348/E7.056
6,473,560 B1 10/2002 Linnartz et al.
6,549,638 B2 4/2003 Davis et al.
7,062,784 B2 6/2006 Sinquin et al.
7,171,693 B2 * 1/2007 Tucker et al. T26/26
7.203,962 B1 * 4/2007 Moran T26/23
7,340,778 B2 3/2008 Brown
7,444,622 B2 * 10/2008 Grieskamp et al. 717/124
7,458,100 B2 11/2008 Jascau et al.
7.587,601 B2 9/2009 Levy et al.

(74) Attorney, Agent, or Firm — FisherBroyles LLP:
Richard M. Lehrer

(57) ABSTRACT
The present invention is directed to a method for forensic
examination of data access of an information system. The
invention allows a user to determine the occurrence and
nature of data access. In particular, it allows the user to
determine if data were copied. The invention does not
require modification of the information system or data
beforehand, and requires access to no artifact or evidence
other than information system itself.

37 Claims, No Drawings

US 9,535,994 B1
1.

METHOD AND SYSTEM FOR FORENSIC
INVESTIGATION OF DATA ACCESS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This patent application claims the benefit of provisional
patent application 61/318,071, filed Mar. 26, 2010.

BACKGROUND OF THE INVENTION

Field of the Invention
The invention relates to methods for examining an infor

mation system to ascertain the occurrence or nature of the
access performed.

Description of the Related Art
Theft of corporate proprietary information, according to

the FBI and CSI, has repeatedly been the most financially
harmful category of computer crime (“CSI/FBI 2003 Com
puter Crime and Security Survey'). Insider data theft is
especially threatening and difficult to detect, since the thief
often has the technical authority to access the information
(Hillstrom and Hillstrom, “Gale Encyclopedia of Small
Business', Gale Group/Thomson, 2002: Yu and Chiueh,
Display-only file server, Proceedings of the 4” ACM work
shop on DRM, 2004). Consequently, there is a great need for
methods to conduct examinations of information systems or
data to be able to determine if data has been copied. More
generally, there is a need for methods to conduct examina
tions of information systems or data to determine the exis
tence or nature of past access.

Numerous inventions attempt to prevent copying of data
or digital assets. Examples include U.S. Pat. No. 7.062,784
to Sinquin et al (2006), U.S. Pat. No. 7.340,778 to Brown
(2008), U.S. Pat. No. 7,458,100 to Jascau and Lange (2008),
U.S. Pat. No. 6,473,560 to Linnartz and Talstra (2002), and
U.S. Pat. No. 5,761,302 to Park (1998). These inventions
attempt to prevent unauthorized data copying. However,
they fail to enable a post facto examiner to determine if data
were copied or not.

There are many inventions which involve modifying an
information system to detect Subsequent copies of data.
Examples include U.S. Pat. No. 6,549,638 to Davis et al
(2003). Likewise, there are many inventions which involve
modifying data itself to detect Subsequent copies, a process
generally known as watermarking. Examples include U.S.
Pat. No. 7,587,601 to Levy et al (2009). These inventions
only work in the case in which the required modifications
were performed before the time of alleged copying under
investigation. Thus, for the majority of information systems
and data, which have not been specially modified to detect
copying, these inventions fail to be of use.

Several methods which detect if data were copied without
requiring special modifications beforehand have been
invented. Liu et all present a method to do so given a
network trace of the activity (in Liu et al. “SIDD: A
framework for detecting sensitive data exfiltration by an
insider attack”. Hawaii International Conference on System
Sciences, 2009). However, this method only works when
network activity has been recorded and preserved, and is
available to the examiner. For the majority of examinations,
this is not the case. Chow K. P. Law Frank Y. W. Kwan
Michael Y K, Lai Pierre KY. The Rules of time on NTFS
file system, Pages 71e 85 of: SADFE 07, In: Proceedings of
the second international workshop on systematic approaches
to digital forensic engineering, Washington, D.C., USA:
IEEE Computer Society; 2007 presents a method to detect

10

15

25

30

35

40

45

50

55

60

65

2
copying given the media to which the data was copied.
However, this method requires the examiner to have access
to the media to which the data was copied. In the majority
of examinations, the examiner does not have this.

Farmer and Venema (“Forensic Discovery’. Pearson,
2005) present a method to examine a filesystem and deter
mine the quantity of file access occurring at a particular
time. They make particular use of MAC timestamps, which
are times of last access of each file, automatically recorded
by many modern filesystems. Their invention has been
widely adopted by practitioners of the art, and is a compo
nent of numerous other inventions in the art. Their invention
is capable of detecting if file access occurred at a particular
time. However, their invention is incapable of distinguishing
copying data from other forms of reading it, and hence
cannot be used to ascertain if data was copied. Furthermore,
although it can determine that activity occurred on a par
ticular date, it cannot determine the nature of that activity.

Furthermore, on certain filesystems, such as Microsoft
Windows NTFS, data can be copied without being read by
the user, causing it to be invisible to the method of Farmer
and Venema. In short, to date, no method has been invented
which, given an information system or filesystem, which has
not been specially modified beforehand, can determine if
data or files were copied from it, or can determine the nature
of activity which may have occurred at a particular time.
Forensics expert Harlan Carvey specifically notes that
despite the large need for a method to detect copying of data
without acquiring the media that the data was copied to,
neither he nor anyone else has been able to do so. "... the
simple fact is that at this time, there are no apparent artifacts
of the process . . . Artifacts of a copy operation . . . are not
recorded in the Registry, or within the file system, as far as
I and others have been able to determine.” (Carvey, “Win
dows Forensic Analysis DVD Toolkit, Second Edition,
Syngress, 2009).

Thus, what is needed is a method of examining a filesys
tem or information system, which can determine if data was
copied, or which can determine the nature of access which
may have occurred, which does not require specially modi
fying the system or data beforehand, and does not require
access to the media to which the data may have been copied
tO.

SUMMARY OF THE INVENTION

In various embodiments, techniques for examination of
information systems to determine the occurrence or nature
of past access are presented. More specifically, and in an
embodiment, a method is provided to ascertain whether data
were copied from a computer filesystem. This method may
be used in a forensic examination. The times of access of a
plurality of datums are ascertained. If data were copied,
these times will have certain characteristics. If the data were
not copied, the times will have other characteristics. By
examining these characteristics, it is determined if the data
were copied. More generally, by examining these character
istics, the occurrence or nature of access of the data is
ascertained.

BRIEF DESCRIPTION OF THE DRAWINGS

None.

DETAILED DESCRIPTION OF THE
INVENTION

Concepts

Certain concepts which aid in understanding the invention
shall be described. It should be noted that these concepts are

US 9,535,994 B1
3

helpful for understanding the invention, and therefore illus
trate certain examples in certain contexts, but that the
invention is not limited to these contexts or examples. The
purpose of this section is an aid to comprehension. A
subsequent section will describe embodiments of the inven
tion.
Of course, the embodiments of the invention can be

implemented in a variety of ways. Any particular example,
architecture, implementation, or usage presented herein is
provided for purposes of illustration and comprehension
only and is not intended to limit the various aspects of the
invention.
We can distinguish between the access pattern of copying

and that of routine access. Routine file access is selective:
individual files and folders are opened while others are
ignored. It is also temporally irregular: files are accessed in
response to user or system activity, followed by a lull in
access until the next activity causes new file access.

Copying of folders, however, is nonselective: every file
and subfolder within the folder is copied. It is furthermore
temporally continuous: files are copied sequentially without
pause until the entire operation is complete.

Copying folders is also recursive: copying one folder
invokes the copying of all subfolders, which each invoke
copying of their subfolders, and so on, while routine activity
is randomly ordered.

This recursive nature of copying results in an additional
trait. To copy a folder, the system must enumerate the
folder's contents. Modern filesystems implement folders as
special types of files called “directories’: to enumerate a
folder's contents, the system accesses and reads the direc
tory file. Thus, copying will invariably access a directory
before accessing its files and subfolders. What's more, since
this is a data read and not a file copy, Microsoft Windows
NTFS does update the access time of the directory when its
contents are enumerated or copied.

Thus, copying a folder creates distinct emergent patterns,
which can be recognized Subsequently. In particular, a
filesystem examined after copying occurs will show these
six characteristics: Access is Nonselective (all subfolders
and files accessed). Access is Temporally Continuous,
Access is Recursively Ordered, Directories Are Accessed
Prior to Their Files, On Microsoft Windows NTFS: Direc
tory timestamps updated, but not file. A filesystem where the
activity was routine access and not copying will show these
six characteristics: Access is Selective. Access is Temporally
Irregular. Access is Random Ordered, Files Are Accessed
Prior to Their Directories, and Both File and Directory
Timestamps Updated.

Accordingly, we can identify folder copying, and distin
guish it from routine activity. Besides folder copying, there
are other forms of similar recursive, nonselective access,
Such as searching folders for particular files, Scanning them
for viruses, or even using the POSIX ls-lR command to
generate a recursive directory listing. We can distinguish
among these activities, and identify the Software used for
copying, by fingerprinting via these identifying characteris
tics:

File access. Are all, some, or none of the file access
timestamps updated? Copying, depending on the sys
tem, updates either all files or only folders, whereas
virus Scanning may update only certain types of files
(e.g. executable), and searching typically updates only
a Subset of files having a common Subsequence in their
aC.

Skipped folders and files. What types of folders and files
are skipped? Possibilities include ones beginning with

10

15

25

30

35

40

45

50

55

60

65

4
periods, NTFS Alternate Data Streams, NTFS hidden
files, NTFS system files, Microsoft Windows Thumb
S.db, and OS X DS Store.

Tree traversal method. Is the recursion performed breadth
first, depth first, or in another order?

Sibling visit order. What order are siblings visited in?
Filesystem order may be the most common, but alpha
betical or other orders may be used as well. When a
folder contains both files and subfolders, is one
accessed before the other?

Rate. At what rate are folders and files accessed? Does the
rate depend on the number of entries? On the size of
files? It should be noted that a copy command may
recursively enumerate all descendants of a subfolder
before copying any of them, and so the timestamp
updates may happen much faster than the actual copy
1ng.

By observing the above characteristics, we are able to
determine the nature of the activity which occurred.

Furthermore, we can detect such activity even months
after its occurrence, and even when the date of the alleged
copying is unknown. To understand how, we can make two
observations: First, while normal system activity (ignoring
things like intentional tampering or resetting the system
clock) can increase access timestamps to more recent times,
it cannot decrease them. Thus, although access timestamps
are extremely volatile (as each access overwrites the previ
ous timestamp), they nonetheless maintain an invariant of
always increasing monotonically.

Second, filesystem activity is by no means uniformly, or
even normally, distributed over files. Activity more closely
resembles heavy-tailed distributions, such as a Pareto dis
tribution: a small amount of files generally account for a
large portion of activity, with a significant amount of files
undergoing negligible activity. Farmer and Venema report in
their work “Forensic Discovery” (2005) that over periods as
long as a year, the majority of files on a typical server are not
accessed at all.

Consequently, if a folder was copied, we can expect to
find the following, even if several weeks or months have
elapsed since the time of copying:

Neither the copied folder, nor any of its subfolders, have
access timestamps less than the time of copying.

A large number of these folders have access timestamps
equal to the time of copying.

On Microsoft Windows NTFS, file timestamps will not
resemble folders' timestamps. Specifically, many files
will have access timestamps before any of the folders.

Copying thus creates an artifact which we call a “cutoff
cluster’’: a point in time which no subfolder has an access
timestamp prior to (hence a “cutoff), and which a dispro
portionate number of Subfolders have access timestamps
equal to (hence a “cluster'). We generally expect a folder to
have a number of rarely accessed subfolders, which cause
the cutoff cluster to remain detectable for several weeks or
months (or until the next act of copying). Conversely, in the
absence of copying (or other nonselective, recursive access),
we expect to find some folders with access timestamps
extending far back in time, consistent with a heavy tailed
distribution.

Consequently, by measuring the size and time of a cutoff
cluster pertaining to a folder, we can determine the likeli
hood that the folder was copied at a particular time.

Embodiments of the Invention

As used herein, "datum' means a unit of information
stored in an information system. "Data” means a plurality of
datum.

US 9,535,994 B1
5

In one embodiment, the method is implemented as
instructions in a machine-accessible and computer-readable
storage medium. The instructions are executed by a machine
(processing device, processor, computer, etc.). The machine
is provided with an information system to be examined, or
a copy, duplicate, or image of one. The inventor presently
contemplates examining a hierarchical filesystem, Such as
Microsoft Windows NTFS or Linux ext3; however other
types of filesystems or information systems may be exam
ined as well. The machine provides an interface for the user
to select a subset of data, such as a particular folder within
the filesystem image, which is to be examined. The user
selects Such a Subset, henceforth known as the "designated
subset'. The machine provides an interface for the user to
select a particular period of time which is to be investigated.
The user selects such a period of time, henceforth known as
the “investigation window'.

The machine has a random access memory (RAM), and
loads the time of access of each datum within the designated
subset into an array stored in the RAM. This array is
henceforth known as the “access time array'. The machine
may also load into the array other relevant information or
meta-information, Such as the name of the datum, the type
of the datum, or the creation date of the datum. I presently
contemplate that the time of access is determined by exam
ining the MAC timestamp which is stored in many filesys
tems; however, other means of determining time of access
may be used as well.
The machine then performs one or more of the following

operations:
Operation A
1. The machine may iterate through the access time array

and remove the records associated with data which match a
predetermined criteria. The criteria may include the type of
datum, the name of the datum, the creation date of the
datum, the access rights required to access the datum, or
other relevant factors. In an alternative embodiment, this
step is omitted.

2. The machine iterates through the array and determines
the earliest time of access of any datum within the desig
nated subset. This time is stored in the RAM in a known
location. This time is henceforth known as the “earliest
access time'.

3. The machine compares the earliest access time with the
beginning of the investigation window. If the earliest access
time is before the beginning of the investigation window, the
machine reports that designated Subset does not appear to
have been copied in its entirety during the investigation
window.

4. In some embodiments, the machine may report the
earliest access time, and indicate that the designated Subset
does not appear to have been copied in its entirety at any
point Subsequent to the earliest access time.

Operation B
1. The machine may iterate through the access time array

and removes the records associated data which match a
predetermined criteria. The criteria may include the type of
datum, the name of the datum, the creation date of the
datum, the access rights required to access the datum, or
other relevant factors. In an alternative embodiment, this
step is omitted.

2. The machine initializes a new array, henceforth known
as the 'yes-accessed array'.

3. The machine initializes another new array, henceforth
known as the “not-accessed array'.

4. The machine iterates through each record of the access
time array. For each record in the array, if the access time

5

10

15

25

30

35

40

45

50

55

60

65

6
stored is within the investigation window, the record is
copied into the yes-accessed array. If the access time stored
is prior to the investigation window, the record is copied into
the not-accessed array. If the access time stored is Subse
quent to the investigation window, some embodiments will
skip the record and not copy it at all. Other embodiments
may copy it to the not-accessed array.

Operation C
1. Operation B is performed.
2. The machine’s instructions or data contain a predeter

mined predicate, henceforth known as the “candidate predi
cate. Example candidate predicates include:

2a. Is the datum a directory?
2b. Is the datum an executable file?
2c. Is the datum a predetermined type of file?
2d. Does the name of the datum match a particular regular

expression?
2e. Does the name of the datum begin with a predeter

mined special character, Such as the period character?
2f. Does a predetermined user have access rights to access

the datum?
Other candidate predicates are possible as well.
3. The machine iterates through the yes-accessed array

and calculates the amount of records which match the
candidate predicate. This amount is henceforth known as the
“yes-factor'. This amount may be calculate in absolute units
(that is, the number of data that match), or relative units (that
is, the percentage of data that match).

4. The machine iterates through the not-accessed array
and calculates the amount of records which match the
candidate predicate. This amount is henceforth known as the
“no-factor'. This amount may be calculate in absolute units
(that is, the number of data that match), or relative units (that
is, the percentage of data that match).

5. A Boolean variable is initialized in the machine's
RAM, henceforth known as the “test-result. If the yes
factor is sufficiently high, and the no-factor sufficiently low,
the machine sets the test-result to TRUE. If the yes-factor is
not sufficiently high, or the no-factor is not sufficiently low,
the machine sets the test-result to FALSE.

6. The machines instructions or data include a description
of the implications of each test-result. This is henceforth
known as the “conclusion”. Example conclusions include:

6a. When, on a Microsoft Windows NTFS system, a
TRUE test-result occurs for the candidate predicate “Is
the datum a directory?, the conclusion is “Designated
Subset appears to have been copied during investigation
window.” (This is because Microsoft Windows NTFS
systems read only directories, and not individual files,
when copying folders.)

6b. When a TRUE test-result occurs for the candidate
predicate “Does the name of the datum match a par
ticular regular expression?', the conclusion may be
“Designated Subset appears to have been searched
during investigation window.”

6c. When a TRUE test-result occurs for the candidate
predicate “Is the datum an executable file?', the con
clusion may be “Designated Subset appears to have
been virus scanned during investigation window.”

Other conclusions are possible. In some embodiments, the
conclusion will be immediately reported to the user. In
other embodiments, the machine will, for each conclu
sion, store a numerical variable in RAM, henceforth
known as the conclusion’s “likelihood heuristic.” The
machine will increase the likelihood heuristic corre
sponding to the conclusion. After completing all opera

US 9,535,994 B1
7

tions, the machine will inform the user of the final
likelihood heuristic corresponding to every conclusion.

Operation D
1. Operation B is performed.
2. The machine sorts the records of the yes-array in order

of access time, from earliest access time to latest access
time. This can be performed using a standard sorting algo
rithm, such as quickSort, or other means of sorting.

Operation E
1. Operation D is performed.
2. The machine’s instructions or data contain a predeter

mined invariant, henceforth known as the “access invariant'.
Example access invariants include "Files are accessed only
after their parent directory is accessed’ or “Files are
accessed in a temporally continuous manner, without pauses
beyond a predetermined length.”

Other access invariants are possible.
3. The machine iterates through the yes-accessed array

and determines if the access invariant is met. This result is
stored in a Boolean variable in the machine's RAM known
as the test-result, similar to the test-result described above in
Operation C, Step 5.

4. The machine’s instructions or data contain a conclusion
corresponding to each test result of each access invariant.
The conclusion is reported, or the conclusions likelihood
heuristic is increased, similar to Operation C, Step 6. For
example, if the access invariant "Files are accessed only
after their parent directory is accessed’ has test-result
TRUE, the conclusion reported may be “Designated subset
was copied or accessed recursively.” Other conclusions are
possible.

Operation F
1. Operation D is performed.
2. The machine’s instructions or data contain a predeter

mined method of order, henceforth known as the “method of
order”. Example methods of order include alphabetical
order, storage order, hierarchical breadth first order, and
hierarchical depth first order. Other methods of order are
possible.

3. The machine iterates through the yes-accessed array
and determines if the order of data access is consistent with
the method of order. This result is stored in a Boolean
variable in the machine's RAM known as the test-result,
similar to the test-result described above in Operation C,
Step 5.

4. The machine’s instructions or data contain a conclusion
corresponding to each testresult of each method of order.
The conclusion is reported, or the conclusions likelihood
heuristic is increased, similar to Operation C, Step 6.

Operation G
1. Operation D is performed.
2. The machine iterates through the yes-accessed array

and subtracts the time of access of each record from the time
of access of the Subsequent record. Thus, the machine
calculates the time lapse between record access. Using
standard arithmetic routines, the machine calculates the
average rate of access.

3. The machine’s instructions or data contain a set of
conclusions, similar to the ones described above, and rates
of access associated with each conclusion. The conclusion is
reported, or the conclusion’s likelihood heuristic is
increased, similar to Operation C, Step 6.

Operation H
1. Operation D is performed.
2. The machine iterates through the yes-accessed array

and calculates its total amount of records which match the
candidate predicate. This amount is henceforth known as the

5

10

15

25

30

35

40

45

50

55

60

65

8
“yes-factor'. This amount may be calculate in absolute units
(that is, the number of data that match), or relative units (that
is, the percentage of data that match).

3. The machine compares the yes-factor to a predeter
mined threshold. If the yes-factor is sufficiently large, the
machine indicates that copying likely occurred.

4. In some embodiments, the machine may furthermore
use a Monte Carlo simulation or a mathematical formula to
calculate the probability that the yes-factor would have been
observed if copying were not to have occurred. This
machine reports this probability.

It is to be noted that while some embodiments may
perform all of the above steps and all of the above opera
tions, other embodiments will only perform some or one of
them. Similarly, Some embodiments will perform an opera
tion multiple times, each time using different criteria.

It should be noted that some embodiments will, for
reasons of speed and efficiency, perform Some of the steps of
the operations in different order than the example listed
above, or perform some of them in parallel with each other,
or perform some of them simultaneously with each other.
Likewise, for reasons of speed and efficiency, Some embodi
ments will avoid removing records from an array or copying
them to another array, and instead modify the records in
place in the array or use auxiliary storage in RAM.

In an alternate embodiment, the machine is not provided
with an information system, but only Summary information
or meta-information from one. In particular, one embodi
ment involves providing the machine with simply a listing of
data and their time of access.

In another embodiment, the user does not select a par
ticular folder to be examined. Instead, the machine itera
tively examines all folders in the filesystem, or all folders
matching a predetermined criteria.

In another embodiment, the user does not select a par
ticular period of time which is to be investigated. Instead, the
machine investigates all time periods, or all time periods for
which sufficient data is available, or all time periods match
ing a predetermined criteria.

It should be noted that the present inventor contemplates
use of the invention as part of a forensic investigation to
detect data copying. However, the invention can be used to
determine the occurrence or nature of access forms other
than copying as well, and can be used in many contexts
besides forensic investigations.

Conclusions, Ramifications, and Scope

Accordingly, the reader will see that the present invention
can be used to examine an information system or filesystem
and determine the nature of the access performed on it. It can
do so without requiring the information system to have been
specially modified beforehand, and without requiring access
to any evidence or artifacts other than the information
system or filesystem itself. It can be used in this situation to
determine if data was copied. It can be used to determine the
nature of activity or access done on the data of the infor
mation system. It can be used as part of a forensic exami
nation, or in other scenarios. Consequently, it addresses a
great need which henceforth has not been met.
The above description is illustrative, and not restrictive.

Many other embodiments will be apparent to those of skill
in the art upon reviewing the above description. The scope
of embodiments should therefore be determined with refer
ence to the appended claims, along with the full scope of
equivalents to which Such claims are entitled.

US 9,535,994 B1
9

The Abstract is provided to comply with 37 C.F.R. 1.72(b)
and will allow the reader to quickly ascertain the nature and
gist of the technical disclosure. It is submitted with the
understanding that it will not be used to interpret or limit the
Scope or meaning of the claims.

In the foregoing description of the embodiments, various
features are grouped together in a single embodiment for the
purpose of streamlining this disclosure. This method of
disclosure is not to be interpreted as reflecting that the
claimed embodiments have more features than are expressly
recited in each claim. Rather, as the following claims reflect,
inventive subject matter lies in less than all features of a
single disclosed embodiment. Thus the following claims are
hereby incorporated into the Description of the Embodi
ments, with each claim standing on its own as a separate
exemplary embodiment.

The invention claimed is:
1. An apparatus to differentiate among various forms of

accessing data which is stored in an information system, said
differentiation being based on a time of access for said data
during a finite time period, said finite time period having a
beginning time and an ending time; wherein said data
includes a plurality of datum, the apparatus comprising:

a non-transitory machine-readable medium; and
a plurality of instructions in the machine-readable
medium which, when executed by a processing
machine, enable the processing machine to perform
operations comprising:
obtaining and storing in an array a time of access for at

least a plurality of said datum in said data;
iterating through said array and making at least one

determination selected from the group of determina
tions consisting of determining an earliest of said
stored times of access and determining for each of
said stored times of access whether said time of
access falls within said finite time period;

when the selected determination includes determining for
each of said stored times of access whether said time of
access falls within said finite time period performing a
comparison between said stored times of access and at
least one predetermined invariant; transforming said
times of access into a conclusion as to said form of
access that has occurred based at least in part on a result
of said comparison between said times of access and
said at least one predetermined invariant; and,

when the selected determination includes determining an
earliest of said stored times of access based at least in
part on said determination, transforming said times of
access into a conclusion as to which of said various
forms of access has occurred.

2. The apparatus according to claim 1 further comprising
said processing machine further providing a user interface
having features that enable selection of said data and said
finite period of time.

3. The apparatus according to claim 1 wherein said
determination is said determining an earliest of said stored
times of access and said processing machine further per
forms a comparison between said earliest of said stored
times of access and said beginning time;

said comparison resulting in said earliest of said stored
times of access being earlier in time than said begin
ning time; and,

said conclusion as to a status of said access being that said
datum associated with said plurality of said stored
times of access was not copied in its entirety during
said finite time period.

10

15

25

30

35

40

45

50

55

60

65

10
4. The apparatus according to claim 1 further comprising

said processing machine further performing operations
including comparing each of said datum associated with said
plurality of said stored times of access to a set of predeter
mined criteria and removing all datum from said data which
match at least one of said predetermined criteria.

5. The apparatus according to claim 4 wherein said set of
predetermined criteria includes at least one criteria selected
from the group of criteria including a type, a name, a
creation date and an access right required for accessing said
datum.

6. The apparatus according to claim 5 further comprising
said processing machine further performing a determination
of how many of said datum associated with said plurality of
said stored times of access do not match said at least one
predetermined predicate and storing said do not match
determination as another value;

comparing said another value to another threshold value;
and;

wherein said conclusion as to said form of access that has
occurred also being based at least in part on a result of
said comparison between said another value and said
another threshold.

7. The apparatus according to claim 1 wherein said
determination is said determining for each of said stored
times of access whether said stored time of access falls
within said finite period of time; wherein a plurality of said
stored times of access are determined to fall within said
finite period of time;

said processing machine further performs:
a comparison between said datum associated with said

plurality of said stored times of access and at least
one predetermined predicate;

a determination of how many of said datum associated
with said plurality of said stored times of access
match said at least one predetermined predicate and
storing said match determination as a value;

comparing said value to a threshold value; and,
wherein said conclusion as to said form of access that

has occurred being based at least in part on a result
of said comparison between said value and said
threshold.

8. The apparatus according to claim 7 wherein said
threshold value and said another threshold value are the
same value.

9. The apparatus according to claim 7 wherein said at least
one predetermined predicate includes at least one predicate
from the group of predicates consisting of is the datum a
directory, is the datum an executable file, is the datum a
predetermined type of file, does the name of the datum
match a particular regular expression, does the name of the
datum begin with a predetermined special character, and
does a predetermined user have access rights to access the
datum.

10. The apparatus according to claim 7 further comprising
said processing machine comparing said value to another
threshold value; and, when said comparison results in said
value being greater than said another threshold value said
conclusion being that copying of said datum that match said
at least one predetermined predicate likely occurred during
the finite time period.

11. The apparatus according to claim 10 wherein said
threshold value and another threshold value are the same
threshold value.

US 9,535,994 B1
11

12. The apparatus according to claim 1, wherein said
processing machine further performs sorting, in order of
access time, said times of access for said at least two of said
plurality of said datum.

13. The apparatus according to claim 1 wherein said at
least one predetermined invariant includes at least one
invariant from the group of invariants consisting of files are
accessed only after their parent directory is accessed and
files are accessed in a temporally continuous manner, with
out pauses beyond a certain length.

14. The apparatus according to claim 1 wherein said
processing machine further performs a comparison between
said times of access of said at least two of said plurality of
said datum and at least one predetermined method of order;
wherein said conclusion as to said form of access that has
occurred being based on a result of said comparison between
said times of access of said at least two of said plurality of
said datum and said at least one predetermined method of
order.

15. The apparatus according to claim 14 wherein said at
least one predetermined method of order includes at least
one method of order from the group of methods of order
consisting of alphabetical order, storage order, hierarchical
breadth first order and hierarchical depth first order.

16. The apparatus according to claim 1 wherein said
processing machine further performs a determination of time
lapses between a plurality of consecutive stored times of
access and determines an average rate of access based on
said determined time lapses; wherein said conclusion as to
said form of access that has occurred being based on said
average rate of access.

17. The apparatus according to claim 16 wherein said
plurality of consecutive times of access includes all of said
consecutive times of access.

18. A method for differentiating among various forms of
accessing data which is stored in an information system
based on a time of access for said data during a finite time
period, said finite time period having a beginning time and
an ending time, wherein said data includes a plurality of
datum, the method comprising:

a processor obtaining and storing in an array a time of
access for a plurality of said datum during said finite
time period;

said processor iterating through said array and making at
least one determination selected from the group of
determinations consisting of determining an earliest of
said stored times of access and determining for each of
said stored times of access whether said time of access
falls within said finite time period;

when the selected determination includes determining for
each of said stored times of access whether said time of
access falls within said finite time period performing a
comparison between said stored times of access and at
least one predetermined invariant; transforming said
stored time periods into a conclusion as to said form of
access that has occurred based at least in part on a result
of said comparison between said times of access and
said at least one predetermined invariant; and,

when the selected determination includes determining an
earliest of said stored times of access based at least in
part on said determination said processor transforming
said stored time periods into a conclusion as to which
of said various forms of access to said data has occurred
during said finite time period.

19. The method according to claim 18 wherein said
determination is said determining an earliest of said stored

10

15

25

30

35

40

45

50

55

60

65

12
times of access and said processor further performs a com
parison between said earliest of said stored times of access
and said beginning time;

said comparison resulting in said earliest of said stored
times of access being earlier in time than said begin
ning time; and,

said conclusion as to said form of access to said data that
has occurred being that said data was not copied in its
entirety during said finite time period.

20. The method according to claim 18 further comprising
said processor comparing each of said datum associated with
said stored times of access to a set of predetermined criteria
and removing all datum which matches at least one of said
predetermined criteria.

21. The method according to claim 20 wherein said set of
predetermined criteria includes at least one criteria selected
from the group of criteria including a type, a name, a
creation date and an access right required for accessing said
datum.

22. The method according to claim 20 wherein said
threshold value and said another threshold value are the
same value.

23. The method according to claim 18 wherein said
determination is said determining for each of said stored
times of access whether said time of access falls within said
finite time period; wherein a plurality of said times of access
are determined to fall within said finite time period;

said processor comparing said datum associated with said
plurality of said stored times of access with at least one
predetermined predicate; determining how many of
said datum associated with said plurality of said stored
times of access match said at least one predetermined
predicate and causing said match determination to be
stored as a value;

said processor comparing said value to a threshold value;
and,

wherein said conclusion as to said form of access to said
data that has occurred being based at least in part on a
result of said comparison between said value and said
threshold.

24. The method according to claim 23 further comprising
said processor determining how many of said datum asso
ciated with said plurality of said stored times of access do
not match said at least one predetermined predicate and
causing said do not match determination to be stored as
another value;

said processor comparing said another value to another
threshold; and,

wherein said conclusion as to said form of access to said
data that has occurred also being based at least in part
on a result of said comparison between said another
value and said another threshold.

25. The method according to claim 23 wherein said at
least one predetermined predicate includes at least one
predicate from the group of predicates consisting of is the
datum a directory, is the datum an executable file, is the
datum a predetermined type of file, does the name of the
datum match a particular regular expression, does the name
of the datum begin with a predetermined special character,
and does a predetermined user have access rights to access
the datum.

26. The method according to claim 23 further comprising
said processor comparing said value to another threshold
value; and, when said comparison results in said value being
greater than said another threshold value said conclusion

US 9,535,994 B1
13

being that copying of said datum that match said at least one
predetermined predicate likely occurred during said finite
time period.

27. The method according to claim 26 wherein said
threshold value and said another threshold value are the
same threshold value.

28. The method according to claim 25, further comprising
said processor sorting, in order of access time, said times of
access for said at least two of said plurality of said datum.

29. The method according to claim 18 wherein said at
least one predetermined invariant includes at least one
invariant from the group of invariants consisting of files are
accessed only after their parent directory is accessed and
files are accessed in a temporally continuous manner, with
out pauses beyond a certain length.

30. The method according to claim 18 further comprising
said processor comparing said times of access of said at least
two of said plurality of said datum and at least one prede
termined method of order; wherein said conclusion as to a
form of access to said data that has occurred being based on
a result of said comparison between said times of access of
said at least two of said plurality of said datum and said at
least one predetermined method of order.

31. The method according to claim 30 wherein said at
least one predetermined method of order includes at least
one method of order from the group of methods of order
consisting of alphabetical order, storage order, hierarchical
breadth first order and hierarchical depth first order.

32. The method according to claim 18 further comprising
said processor determining time lapses between a plurality
of consecutive times of access in said stored times of access
and determining an average rate of access based on said
determined time lapses; wherein said conclusion as to said
form of access to said data that has occurred being based on
said average rate of access.

10

15

25

30

14
33. The method according to claim 32 wherein said

plurality of consecutive stored times of access includes all of
said consecutive stored times of access.

34. A method for differentiating among various possible
forms of accessing an electronically accessed folder,
wherein said folder is stored in an information system, said
folder includes at least one subfolder stored in said infor
mation system, at least one of said folder and said subfolder
includes an associated file stored therein, and wherein said
folder and said subfolder are each implemented as a direc
tory file in said information system, the method comprising:

a processor reviewing a characteristic of said electronic
access to said folder and determining from said review
whether said access is nonselective; said processor
concluding, when a result of said determination is that
said electronic access to said folder is nonselective and
when said access to said folder or to said subfolder does
not have an access timestamp that is earlier than a time
associated with a cutoff time of the nonselective access,
that said form of accessing is that said folder has been
copied.

35. The method according to claim 34 further comprising
said processor further determining that said access is tem
porally continuous.

36. The method according to claim 35 further comprising
said processor further determining that said access is recur
sively ordered and said directory files are accessed prior to
their associated file.

37. The method according to claim 34 further comprising
said processor concluding, when a result of said determina
tion is that said electronic access to said folder is selective,
that said form of accessing is that said folder has not been
copied.

